Fluorofenidone Offers Improved Renoprotection at Early Interventions during the Course of Diabetic Nephropathy in db/db Mice via Multiple Pathways
نویسندگان
چکیده
Diabetic nephropathy (DN) remains the leading cause of end-stage renal disease (ESRD), a situation that is in part attributable to the lack of effective treatments. Fluorofenidone is a newly developed reagent with anti-fibrotic activity. While fluorofenidone was previously demonstrated to possess renoprotection from DN pathogenesis in db/db mice, the protective process and its underlying mechanisms have not been well studied. To characterize fluorofenidone-derived renoprotection, we treated 5, 8, or 12-week old db/db mice with daily doses of placebo, fluorofenidone, or losartan until 24 weeks of age; the time at which diabetes and DN were fully developed in placebo-treated animals. In comparison to db/db mice receiving fluorofenidone at 12-weeks old, those treated at 5-weeks had less glomerular expansion and better preservation of renal functions, judged by serum creatinine levels, albumin to creatinine ratio, and urinary albumin excretion (mg/24 hours). These benefits of early treatment were associated with significant reductions of multiple DN-promoting events, such as decreased expression of TGF-β1 and the p22phox subunit of NADPH oxidase as well as downregulated activation of protein kinase C-zeta (ζ), ERK and AKT. This improvement in renoprotection following early interventions is not a unique property of DN pathogenesis, as losartan does not apparently offer the same benefits and is not more renoprotective than fluorofenidone. Additionally, the enhanced renoprotection provided by fluorofenidone did not affect the diabetic process, as it did not alter serum levels of glycated serum proteins, glucose, triglyceride or cholesterol. Collectively, we provide evidence that fluorofenidone offers improved renoprotection at early stages of DN pathogenesis.
منابع مشابه
Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy.
Diabetic nephropathy is the most common cause of end-stage renal disease in the U.S. Recent studies demonstrate that loss of podocytes is an early feature of diabetic nephropathy that predicts its progressive course. Cause and consequences of podocyte loss during early diabetic nephropathy remain poorly understood. Here, we demonstrate that podocyte apoptosis increased sharply with onset of hyp...
متن کاملAngiotensin 1-7 mediates renoprotection against diabetic nephropathy by reducing oxidative stress, inflammation, and lipotoxicity.
The renin-angiotensin system, especially angiotensin II (ANG II), plays a key role in the development and progression of diabetic nephropathy. ANG 1-7 has counteracting effects on ANG II and is known to exert beneficial effects on diabetic nephropathy. We studied the mechanism of ANG 1-7-induced beneficial effects on diabetic nephropathy in db/db mice. We administered ANG 1-7 (0.5 mg·kg(-1)·day...
متن کاملHydrogen sulfide improves vessel formation of the ischemic adductor muscle and wound healing in diabetic db/db mice
Objective(s): It has been demonstrated that hydrogen sulfide plays a vital role in physiological and pathological processes such as regulating inflammation, oxidative stress, and vessel relaxation. The aim of the study was to explore the effect of hydrogen sulfide on angiogenesis in the ischemic adductor muscles of type 2 diabetic db/db mice and ischemic diabetic wound...
متن کاملModerate exercise attenuates caspase-3 activity, oxidative stress, and inhibits progression of diabetic renal disease in db/db mice.
Diabetic nephropathy, the leading cause of end-stage renal disease, is characterized by a proapoptotic and prooxidative environment. The mechanisms by which lifestyle interventions, such as exercise, benefit diabetic nephropathy are unknown. We hypothesized that exercise inhibits early diabetic nephropathy via attenuation of the mitochondrial apoptotic pathway and oxidative damage. Type 2 diabe...
متن کاملRosiglitazone Treatment of Type 2 Diabetic db/db Mice Attenuates Urinary Albumin and Angiotensin Converting Enzyme 2 Excretion
Alterations within the renal renin angiotensin system play a pivotal role in the development and progression of cardiovascular and renal disease. Angiotensin converting enzyme 2 (ACE2) is highly expressed in renal tubules and has been shown to be renoprotective in diabetes. The protease, a disintegrin and metalloprotease (ADAM) 17, is involved in the ectodomain shedding of several transmembrane...
متن کامل